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Abstract

The Monte Carlo entropic sampling method previously presented in [I. Shteto, J. Linares, F. Varret, Phys. Rev. E 56 (1997) 5128]

is adapted here to an Ising-like system with short- and long-range interactions. Such model is suited to spin crossover solids [J.

Linares, H. Spiering, F. Varret, Eur. J. Phys. B 10 (1999) 271; K. Boukheddaden, J. Linares, H. Spiering, F. Varret, Eur. Phys. J. B

15 (2000) 317] where the long interaction is due to elastic coupling mediated by the lattice, while the short-range interaction

originates from the bonding between the spin crossover units [J. Linares, H. Spiering, F. Varret, Eur. J. Phys. B 10 (1999) 271].

Taking into account the different degeneracies gHS for high-spin (HS) and gLS for low-spin (LS) states, the Ising Hamiltonian

associated with fictitious spins is written:

H��h
X

si�J
X

sisj

with

h��
D
2
�

kBT ln(gHS=gLS)

2
�G�s�

where J and G are the short- and long-range interactions, respectively, and D the energy gap of ligand field such that the LS state is

the ground state. The numerical method has been tested successfully by comparison to the exact solution for a 1D system:

[Fe(Htrz)2(trz)](BF4)2 [J. Linares, H. Spiering, F. Varret, Eur. J. Phys. B 10 (1999) 271; J. Krober, J.P. Audière, R. Claude, O. Kahn,

J. Hassnoot, F. Grolière, C. Jay, A. Bousseksou, J. Linares, F. Varret, A. Gonthier-Vassal, Chem. Mater. 6 (1994) 1404]. We

describe here the results obtained for 2D systems, and show that the squareness of the thermal hystersis loop, associated with the

spin-transition, can be correlated to the strength of short-range interactions.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Spin crossover phenomenon continues to attract

considerable interest [5�/7]. To explain the various

thermal behaviours, theoretical models taking into

account short- and long-range interactions have been

recently proposed [2,3]. In collaboration with Spiering

we obtained the analytical solution for a 1D-spin

crossover system [2] and we elucidated the origin of

the well marked turning points in the thermal hysteresis

loops. We later developed a dynamic 1D model,

providing analytical expression for the shape of the

relaxation curve [3].

For 2D- and 3D-systems the static models have been

solved by mean field approach [8,9] or by Bethe

approximation [10]. In this work we propose a simple

method to solve the Ising-like Hamiltonian, based on

the Monte Carlo entropic sampling technique, and

including both short- and long-range interactions. The

technique is tested here for 1D systems, by comparison

to the exact solution, and then applied, for simplicity, to

2D systems.
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The report is organised as follows: in the next section

we recall the Ising-like model proposed for spin cross-

over solids. The Monte Carlo entropic sampling is

presented in Section 3. In Section 4 we propose a
method to solve the Ising-like Hamiltonian using the

density of the states d (m , s) obtained by Monte Carlo

entropic sampling. This technique is applied for a finite-

size (till about 1000 molecules) and for any type of

dimension. We analyze the results obtained for 2D

systems in terms of balance between short- and long-

range interactions.

2. Spin crossover compounds and Ising-like model

Some molecular complexes containing 3d4�/3d7 metal

ions in octahedral symmetry have a high-spin (HS) state

with a degeneracy gHS or a low-spin (LS) ground state

with degeneracy gLS according to the ligand field

strength [5�/7]. There are some compounds in which

either HS or LS states can be obtained by variation of

temperature, pressure, magnetic field or by light irradia-

tion [5�/7,11�/15]. These compounds called spin cross-
over or spin-transition systems are textbook examples

for molecular bistability at the microscopic and macro-

scopic scales.

From the theoretical point of view the previous two

molecular states HS and LS are generally represented by

an Ising fictitious spin s [2,3,9] with the eigenstates �/1

(HS) and �/1 (LS) having degeneracies gHS and gLS,

respectively.
The Hamiltonian including long- (G ) and short-range

(J) interactions, writes

H��h
X

si�J
X

sisj (1)

with

h��
D
2
�

kBT ln(gHS=gLS)

2
�G�s� (2)

where D�/0 is the energy gap of ligand field such that

the LS state is the ground state.

The fraction of molecules in the HS state (HS
fraction) is expressed as nHS�/(1�/�s�)/2.

The Hamiltonian expressed by Eqs. (1) and (2) is a

true Ising Hamiltonian (not Ising-like), due to the

temperature-dependent fictitious field, h , with accounts

for the degeneracy ratio.

This Hamiltonian has a exact solution for 1D systems,

however, due to the presence of h there are no exact

solutions for 2D- or 3D- systems. Mean field approx-
imation [8,9] as well as Bethe approximations [10] and

Monte Carlo Metropolis [16] have been used in these

cases.

3. Monte Carlo entropic sampling (after Refs. [1,17])

The total energy of the system, derived from the

Hamiltonian expression (Eqs. (1) and (2)), writes as a
function of two macroscopic variables, as follows:

E(m; s)��hm�Js

/with

m�
X

i�1;N

si and s�
X

�i;j�

sisj

Shteto et al. [1] have described how the biased Monte

Carlo sampling method, called entropic sampling, is

used to calculate the restricted density of states d(m , s ):

the number of configurations for a given set of values of
m and s . d(m , s ) is actually the degeneracy of the

macrostate (m ,s ). The method is briefly recalled here.

The entropic sampling method relies on the idea that

any desired distribution P , can be derived from a suited

Monte Carlo procedure, just by introducing the same

distribution as a bias in the detailed balance equation.

PiW (i 0 j)�PjW (j 0 i) (3)

To explore the entire state space, the suited biased

method has to favor configurations belonging to weakly

degenerate macrostates (small density of states), and to

dampen those belonging to the highly degenerate

macrostates (large density of states). The biasing prob-
ability, which is best suited for sampling the restricted

density of states merely is the inverse of the desired

restricted density of states.

Pi8
1

d(mi; si)
(4)

It follows:

W (i 0 j)

W (j 0 i)
�

Pj

Pi

�
d(mj; sj)

d(mi; si)
(5)

where d(m , s) is a priori unknown. Shteto et al. [1] have

suggested an interactive method, initiated by the re-

scaled results of the similar system at smaller size,

eventually obtained by a straightforward computation.

We term di (m , s) the density of states obtained after

iteration i . Then, using di (m , s) as a bias, a MC

sampling is run; it is termed a ‘Monte Carlo stage’ and

yields a histogram of the frequency of the macrostates:
Hi (m , s).

Hi(m; s)8d(m; s)
1

di(m; s)
(6)

Once corrected for the bias, the resulting restricted
density of states is obtained as:

di�1(m; s)8di(m; s)Hi(m; s) (7)

The method is used iteratively: the flatness of the
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histogram H (m , s) is a convenient convergence criter-

ion.

The major advantage of the method is in terms of

saving computing time, i.e., of increasing the model size.

Indeed, for a system of given size and topology, the

entropic sampling has to be performed only once,

allowing to fill up the d (m , s) table. Then, for any set

of parameter values (temperature, interactions, energy

gap, degeneracies), the partition function Z�
am;sd(m; s) exp (�b(�hm�Js)) and all the thermody-

namic properties of the system (�s�, heat capacity,

magnetic susceptibility, etc.) can be derived analytically.

4. Model, calculations and discussion

Here we describe the method adapted from ‘molecu-

lar-field technique’ for solving the Ising-like Hamilto-

nian of a system with N molecules, for which the density

of states d(m , s ) is provided.
As it is shown in Eqs. (1) and (2) of Section 2, h in the

Ising-like Hamiltonian, is function of �s�, so a

straightforward calculation of �s� is not possible. We

consider a self-consistent technique based on two

different expressions of �s(h )�.

From canonical statistics, a first expression is ob-

tained:

hsa(h)i�

X

i�1;M

mi

N
d(mi; si) exp (�b(�hmi � Jsi))

X

i�1;M

d(mi; si) exp (�b(�hmi � Jsi))
(8)

Curves (a) in Fig. 1(A�/C) show �sa(h )� calculated

for T�/345, 370 and 390 K, respectively, for a 1D
system (100 molecules with periodic conditions) and for

a set values given in the figure caption.

A second expression is derived from the definition of

h (Eq. (2)):

Fig. 1. Fictitious magnetisation �s (h )�, for a 1D system (100

molecules) using Eq. (8) for �sa(h )� (curve (a)) and Eq. (9) for

�sb(h )� for T�/345 K (Fig. 1(A)), 370 K (Fig. 1(B)) and 390 K (Fig.

1(C)). The parameter values are: D�/3126 K, ln(gHS/gLS)�/8.45 and

J�/400 K.

Fig. 2. Fictitious magnetisation �s� versus temperature, for a 1D

system (100 molecules) using the density of states d (m , s ) (*) and by

matrix transfer technique (full line). The parameter values are: D�/

3126 K, ln(gHS/gLS)�/8.45 and J�/800 K.
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Curves (b) in Fig. 1(A�/C) display �sb(h)� calculated

for T�/345, 370 and 390 K, respectively.

The solutions are given by the intersects of �sa(h )�
and �sb(h)�. For T�/345 and 390 K there is only one

solution whereas for T�/370 K there are three solutions.

In Fig. 2 we compare the results provided by this
technique and by the exact 1D treatment (transfer

matrix technique). We have used the thermodynamic

parameters of the [Fe(Htrz)2(trz)](BF4)2 compound

[2,4]. An excellent agreement is obtained.

In Fig. 3 we show the results obtained for 2D systems

(here a square lattice 8�/8 with periodic conditions). In

this case we have fixed the long-range interaction (G�/

105 K) and we have taken six different values for the
short-range interaction J (J�/10, 20, 40, 100 K). D and

gHS/gLS have been taken for a type 2D spin crossover

system: [Fe(btr)2(NCS)2] �/H2O [18]. According to the

values of J a S-shape or a Z-shape is obtained. This

result generalises the previous conclusion, obtained for

1D systems, that the squareness of the thermal hysteresis

loop should be related to the presence of short-range

interactions. A similar conclusion is expected for 3D
systems, and will be reported as soon as obtained.

5. Conclusion

Monte Carlo entropic sampling together with ‘a self-

consistent technique’ proves to be a useful way to
simulate thermal behaviour of the fictitious magnetisa-

tion of spin crossover molecules (1D- and 2D-systems).

An excellent agreement is obtained with transfer matrix

technique for 1D system.

In 2D spin crossover systems, for a given value of the

long-range interaction G , the hysteresis curve changes

from S-shape to Z-shape when increasing short-range

interaction J . This result generalises the conclusion
obtained previously for a 1D system [2].

This technique can also be applied for other Ising

systems (honeycomb, cubic lattice,. . .) as well as for a

Blume-Capel model (for a three-state system).

References

[1] I. Shteto, J. Linares, F. Varret, Phys. Rev. E 56 (1997) 5128.

[2] J. Linares, H. Spiering, F. Varret, Eur. J. Phys. B 10 (1999) 271.

[3] K. Boukheddaden, J. Linares, H. Spiering, F. Varret, Eur. Phys.

J. B 15 (2000) 317.

[4] J. Krober, J.P. Audière, R. Claude, O. Kahn, J. Hassnoot, F.

Grolière, C. Jay, A. Bousseksou, J. Linares, F. Varret, A.

Gonthier-Vassal, Chem. Mater. 6 (1994) 1404.

[5] P. Gütlich, Y. Garcia, T. Woike, Coordin. Chem. Rev. 219�/221

(2001) 839.

[6] F. Varret, M. Nogues, A. Goujon, in: J. Miller, M. Drillon (Eds.),

Magnetism: Molecules to Materials, vol. 2, Wiley WCH, New

York, 2002, pp. 257�/291.

[7] M. Sorai, Bull. Chem. Soc. Jpn 74 (2001) 2223.

[8] C.P. Slichter, H.G. Drickamer, J. Chem. Phys. 56 (1972) 2142.

[9] A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F.

Varret, J. Phys. I 2 (1992) 1381.

[10] B. Hoo, K. Boukheddaden, F. Varret, Eur. Phys. J. B 17 (2000)

449.

[11] J.F. Letard, P. Guionneau, L. Rabardel, J.A.K. Howard, A.E.

Goeta, D. Chasseau, O. et Kahn, Inorg. Chem. 37 (1998) 4432.

[12] A. Desaix, O. Roubeau, J. Jeftic, J.G. Haasnoot, K. Boukhedda-

den, E. Codjovi, J. Linares, M. Nogues, F. et Varret, Eur. Phys. J.

B 6 (1998) 183.

[13] E. Codjovi, N. Menendez, J. Jeftic, F. Varret, C.R. Acad. Sci.

Paris 4 (2001) 181.

[14] S. Klokishner, J. Linares, F. Varret, Chem. Phys. 255 (2000) 317.

[15] A. Bousseksou, K. Boukheddaden, M. Goiran, C. Consejo, M.L.

Boillot, J.P. Tuchagues, Phys. Rev. B 65 (2002) 172412.

[16] J. Linares, J. Nasser, A. Bousseksou, K. Boukheddaden, F.

Varret, J. Magn. Magn. Mater. 140�/144 (1995) 1503.

[17] J. Lee, Phys. Rev. Lett. 71 (1993) 211.

[18] H. Constant, J. Linares, F. Varret, J. Hassnoot, J.P. Martin, J.

Zarembowitch, A. Dworkin, A. Bousseksou, J. Phys. I France 6

(1996) 1203.

Fig. 3. Fictitious magnetisation �s� versus temperature, for a 2D

system (64 molecules with periodic conditions). The parameter values

are: D�/1145 K, ln(gHS/gLS)�/9.22. The short-range interactions are

J�/10 (square symbols), 20 (down-triangle), 40 (up-triangle) and 100

K (closed circle). The larger J , the wider the hysteresis loop, with

increasing squareness.
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